Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 8): 127656, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37884253

RESUMO

Plastic pollution is one of the biggest environmental problems plaguing the modern world. Polyester-based plastics contribute significantly to this ecological safety concern. In this study, lipolytic biocatalysts GD-95RM and GDEst-lip developed based on lipase/esterase produced by Geobacillus sp. 95 strain were applied for the degradation of polycaprolactone films (Mn 45.000 (PCL45000) and Mn 80.000 (PCL80000)). The degradation efficiency was significantly enhanced by the addition of short chain alcohols. Lipase GD-95RM (1 mg) can depolymerize 264.0 mg and 280.7 mg of PCL45000 and PCL80000, films respectively, in a 24 h period at 30 °C, while the fused enzyme GDEst-lip (1 mg) is capable of degrading 145.5 mg PCL45000 and 134.0 mg of PCL80000 films in 24 h. The addition of ethanol (25 %) improves the degradation efficiency ~2.5 fold in the case of GD-95RM. In the case of GDEst-lip, 50 % methanol was found to be the optimal alcohol solution and the degradation efficiency was increased by ~3.25 times. The addition of alcohols not only increased degradation speeds but also allowed for simultaneous synthesis of industrially valuable 6-hydroxyhexonic acid esters. The suggested system is an attractive approach for removing of plastic waste and supports the principles of bioeconomics.


Assuntos
Ésteres , Geobacillus , Lipase/metabolismo , Esterases/metabolismo , Álcoois
2.
Nanomaterials (Basel) ; 13(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37242035

RESUMO

Silver nanoparticles (AgNPs) are widely known for their antimicrobial activity in various systems from microorganisms to cell cultures. However, the data on their effects on microalgae are very limited. Unicellular green algae Haematococcus pluvialis is known for its ability to accumulate large amounts of astaxanthin under stress conditions. Therefore, it can be used as a suitable model system to test the influence of AgNPs on stress induction in unicellular algae, with visible phenotypic effects, such as astaxanthin synthesis and cell morphology. This study tested different AgNP concentrations (0-8 mg/L) effects on different growth stages (red and green) of H. pluvialis culture. Effects on cell morphology, culture productivity, and astaxanthin synthesis were evaluated. Data showed that the addition of high concentrations of AgNPs to the growing culture had a significant negative impact on culture productivity. Green-stage (HpG) cultures productivity was reduced by up to 85% by increasing AgNPs concentration to 8 mg/L while the impact on red-stage (HpR) culture was lower. Astaxanthin concentration measurements showed that AgNPs do not have any effect on astaxanthin concentration in HpG culture and caused decreased astaxanthin production rate in HpR culture. HpG culture astaxanthin concentration stayed constant at ~0.43% dry weight, while HpR culture astaxanthin concentration was significantly reduced from 1.89% to 0.60% dry weight by increasing AgNP concentration. AgNPs in the media lead to significant changes in cell morphology in both HpG and HpR cultures. Cell deformations and disrupted cytokinesis, as well as AgNPs and induced sexual reproduction, were observed.

3.
Materials (Basel) ; 15(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35160993

RESUMO

The structural state and crystal structure of Lu(1-x)ScxFeO3 (0 ≤ x ≤ 1) compounds prepared by a chemical route based on a modified sol-gel method were investigated using X-ray diffraction, Raman spectroscopy, as well as scanning electron microscopy. It was observed that chemical doping with Sc ions led to a structural phase transition from the orthorhombic structure to the hexagonal structure via a wide two-phase concentration region of 0.1 < x < 0.45. An increase in scandium content above 80 mole% led to the stabilization of the non-perovskite bixbyite phase specific for the compound ScFeO3. The concentration stability of the different structural phases, as well as grain morphology, were studied depending on the chemical composition and synthesis conditions. Based on the data obtained for the analyzed samples, a composition-dependent phase diagram was constructed.

4.
Sci Rep ; 9(1): 10417, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320659

RESUMO

We studied magnetostatic response of the Bi0.9La0.1FeO3- KBr composites (BLFO-KBr) consisting of nanosized (≈100 nm) ferrite Bi0.9La0.1FeO3 (BLFO) conjugated with fine grinded ionic conducting KBr. When the fraction of KBr is rather small (less than 15 wt%) the magnetic response of the composite is very weak and similar to that observed for the BLFO (pure KBr matrix without Bi1-xLaxFeO3 has no magnetic response as anticipated). However, when the fraction of KBr increases above 15%, the magnetic response of the composite changes substantially and the field dependence of magnetization reveals ferromagnetic-like hysteresis loop with a remanent magnetization about 0.14 emu/g and coercive field about 1.8 Tesla (at room temperature). Nothing similar to the ferromagnetic-like hysteresis loop can be observed in Bi1-zLazFeO3 ceramics with z ≤ 0.15, which magnetization quasi-linearly increases with magnetic field. Different physical mechanisms were considered to explain the unusual experimental results for BLFO-KBr nanocomposites, but only those among them, which are highly sensitive to the interaction of antiferromagnetic Bi0.9La0.1FeO3 with ionic conductor KBr, can be relevant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...